Перевод: с английского на все языки

со всех языков на английский

A Short History of Technology from the Earliest

  • 1 Girard, Philippe de

    SUBJECT AREA: Textiles
    [br]
    b. 1775 France
    d. 1845
    [br]
    French developer of a successful flax-heckling machine for the preparation of fibres for power-spinning.
    [br]
    Early drawing and spinning processes failed to give linen yarn the requisite fineness and homogeneity. In 1810 Napoleon offered a prize of a million francs for a successful flax-spinning machine as part of his policy of stimulating the French textile industries. Spurred on by this offer, Girard suggested three improvements. He was too late to win the prize, but his ideas were patented in England in 1814, although not under his own name. He proposed that the fibres should be soaked in a very hot alkaline solution both before drawing and immediately before they went to the spindles. The actual drawing was to be done by passing the dried material through combs or gills that moved alternately; gill drawing was taken up in England in 1816. His method of wet spinning was never a commercial success, but his processes were adopted in part and developed in Britain and spread to Austria, Poland and France, for his ideas were essentially good and produced a superior product. The successful power-spinning of linen thread from flax depended primarily upon the initial processes of heckling and drawing. The heckling of the bundles or stricks of flax, so as to separate the long fibres of "line" from the shorter ones of "tow", was extremely difficult to mechanize, for each strick had to be combed on both sides in turn and then in the reverse direction. It was to this problem that Girard next turned his attention, inventing a successful machine in 1832 that subsequently was improved in England. The strick was placed between two vertical sheets of combs that moved opposite to each other, depositing the tow upon a revolving cylinder covered with a brush at the bottom of the machine, while the holder from which the strick was suspended moved up and down so as to help the teeth to penetrate deeper into the flax. The tow was removed from the cylinder at the bottom of the machine and taken away to be spun like cotton. The long line fibres were removed from the top of the machine and required further processing if the yarn was to be uniform.
    When N.L.Sadi Carnot's book Réflexions sur la puissance motrice du feu, was published in 1824, Girard made a favourable report on it.
    [br]
    Further Reading
    M.Daumas (ed.), 1968, Histoire générale des techniques, Vol. III: L'Expansion du
    Machinisme, Paris.
    C.Singer (ed.), 1958, A History of'Technology, Vol. IV, Oxford: Clarendon Press. T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest
    Times to AD 1900, Oxford.
    W.A.McCutcheon, 1966–7, "Water power in the North of Ireland", Transactions of the Newcomen Society 39 (discusses the spinning of flax and mentions Girard).
    RLH

    Biographical history of technology > Girard, Philippe de

  • 2 Cotton, William

    SUBJECT AREA: Textiles
    [br]
    b. 1819 Seagrave, Leicestershire, England
    d. after 1878
    [br]
    English inventor of a power-driven flat-bed knitting machine.
    [br]
    Cotton was originally employed in Loughborough and became one of the first specialized hosiery-machine builders. After the introduction of the latch needle by Matthew Townsend in 1856, knitting frames developed rapidly. The circular frame was easier to work automatically, but attempts to apply power to the flat frame, which could produce fully fashioned work, culminated in 1863 with William Cotton's machine. In that year he invented a machine that could make a dozen or more stockings or hose simultaneously and knit fashioned garments of all kinds. The difficulty was to reduce automatically the number of stitches in the courses where the hose or garment narrowed to give it shape. Cotton had early opportunities to apply himself to the improvement of hosiery machines while employed in the patent shop of Cartwright \& Warner of Loughborough, where some of the first rotaries were made. He remained with the firm for twenty years, during which time sixty or seventy of these machines were turned out. Cotton then established a factory for the manufacture of warp fabrics, and it was here that he began to work on his ideas. He had no knowledge of the principles of engineering or drawing, so his method of making sketches and then getting his ideas roughed out involved much useless labour. After twelve years, in 1863, a patent was issued for the machine that became the basis of the Cotton's Patent type. This was a flat frame driven by rotary mechanism and remarkable for its adaptability. At first he built his machine upright, like a cottage piano, but after much thought and experimentation he conceived the idea of turning the upper part down flat so that the needles were in a vertical position instead of being horizontal, and the work was carried off horizontally instead of vertically. His first machine produced four identical pieces simultaneously, but this number was soon increased. Cotton was induced by the success of his invention to begin machine building as a separate business and thus established one of the first of a class of engineering firms that sprung up as an adjunct to the new hosiery manufacture. He employed only a dozen men and turned out six machines in the first year, entering into an agreement with Hine \& Mundella for their exclusive use. This was later extended to the firm of I. \& R.Morley. In 1878, Cotton began to build on his own account, and the business steadily increased until it employed some 200 workers and had an output of 100 machines a year.
    [br]
    Bibliography
    1863, British patent no. 1,901 (flat-frame knitting machine).
    Further Reading
    F.A.Wells, 1935, The British Hosiery and Knitwear Industry: Its History and Organisation, London (based on an article in the Knitters' Circular (Feb. 1898).
    A brief account of the background to Cotton's invention can be found in T.K.Derry and T.I. Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; C. Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press.
    F.Moy Thomas, 1900, I. \& R.Morley. A Record of a Hundred Years, London (mentions cotton's first machines).
    RLH

    Biographical history of technology > Cotton, William

  • 3 Deverill, Hooton

    SUBJECT AREA: Textiles
    [br]
    fl. c.1835 England
    [br]
    English patentee of the first successful adaptation of the Jacquard machine for patterned lacemaking.
    [br]
    After John Levers had brought out his lacemaking machine in 1813, other lacemakers proceeded to elaborate their machinery so as to imitate the more complicated forms of handwork. One of these was Samuel Draper of Nottingham, who took out one patent in 1835 for the use of a Jacquard mechanism on a lace making machine, followed by another in 1837. However, material made on his machine cost more than the handmade article, so the experiment was abandoned after three years. Then, in Nottingham in 1841, Hooton Deverill patented the first truly successful application of the Jacquard to lacemaking. The Jacquard needles caused the warp threads to be pushed sideways to form the holes in the lace while the bobbins were moved around them to bind them together. This made it possible to reproduce most of the traditional patterns of handmade lace in both narrow and wide pieces. Lace made on these machines became cheap enough for most people to be able to hang it in their windows as curtains, or to use it for trimming clothing. However, it raised in a most serious form the problem of patent rights between the two patentees, Deverill and Draper, threatening much litigation. Deverill's patent was bought by Richard Birkin, who with his partner Biddle relinquished the patent rights. The lacemaking trade on these machines was thus thrown open to the public and a new development of the trade took place. Levers lace is still made in the way described here.
    [br]
    Bibliography
    1841, British patent no. 8,955 (adaptation of Jacquard machine for patterned lacemaking).
    Further Reading
    W.Felkin, 1867, History of Machine-Wrought Hosiery and Lace Manufacture (provides an account of Deverill's patent).
    C.Singer (ed.), 1958, A History of'Technology, Vol. V, Oxford: Clarendon Press (a modern account).
    T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest
    Times to AD 1900, Oxford.
    RLH

    Biographical history of technology > Deverill, Hooton

  • 4 Möller, Anton

    SUBJECT AREA: Textiles
    [br]
    fl. c. 1580 Danzig, Poland
    [br]
    Polish may have been involved with the invention of the ribbon loom.
    [br]
    Around 1586, Anton Möller related that he saw in Danzig a loom on which four to six pieces of ribbon could be woven at once. Some accounts say he may have invented this loom, which required no skill to use beyond the working of a bar. The city council was afraid that a great many workers might be reduced to begging because of this invention, so they had it suppressed and the inventor strangled or drowned. It seems to have been in use in London c. 1616 and at Leiden in Holland by 1620, but its spread was handicapped both by popular rioting and by restrictive legislation. By 1621 the capacity of the loom had been increased to twenty-four ribbons, and it was later increased to fifty. It made its appearance in Lancashire around 1680 and the way the shuttles were operated could have given John Kay the inspiration for his flying shuttle.
    [br]
    Further Reading
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (includes a good description and illustration of the invention).
    to AD 1900, Oxford; C.Singer (ed.), 1957, A History of Technology, Vol. III, Oxford: Clarendon Press (both provide brief accounts of the introduction of the ribbon loom).
    RLH

    Biographical history of technology > Möller, Anton

  • 5 Heilmann, Josué (Joshua)

    SUBJECT AREA: Textiles
    [br]
    b. 1796 Alsace
    d. 1848
    [br]
    Alsatian inventor of the first machine for combing cotton.
    [br]
    Josué Heilmann, of Mulhouse, was awarded 5,000 francs offered by the cotton spinners of Alsace for a machine that would comb cotton. It was a process not hitherto applied to this fibre and, when perfected, enabled finer, smoother and more lustrous yarns to be spun. The important feature of Heilmann's method was to use a grip or nip to hold the end of the sliver that was being combed. Two or more combs passed through the protruding fibres to comb them thoroughly, and a brush cylinder and knife cleared away the noils. The combed section was passed forward so that the part held in the nip could then be combed. The combed fibres were joined up with the length already finished. Heilmann obtained a British patent in 1846, but no machines were put to work until 1851. Six firms of cotton spinners in Lancashire paid £30,000 for the cotton-combing rights and Marshall's of Leeds paid £20,000 for the rights to comb flax. Heilmann's machine was used on the European continent for combing silk as well as flax, wool and cotton, so it proved to be very versatile. Priority of his patent was challenged in England because Lister had patented a combing machine with a gripper or nip in 1843; in 1852 the parties went to litigation and cross-suits were instituted. While Heilmann obtained a verdict of infringement against Lister for certain things, Lister also obtained one against Heilmann for other matters. After this outcome, Heilmann's patent was bought on speculation by Messrs Akroyd and Titus Salt for £30,000, but was afterwards resold to Lister for the same amount. In this way Lister was able to exploit his own patent through suppressing Heilmann's.
    [br]
    Bibliography
    1846, British patent no. 11,103 (cotton-combing machine).
    Further Reading
    For descriptions of his combing machine see: W.English, 1969, The Textile Industry, London; T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; and C.Singer (ed.), 1958, A History of Technology, Vol.
    IV, Oxford: Clarendon Press.
    RLH

    Biographical history of technology > Heilmann, Josué (Joshua)

  • 6 Cartwright, Revd Edmund

    [br]
    b. 24 April 1743 Marnham, Nottingham, England
    d. 30 October 1823 Hastings, Sussex, England
    [br]
    English inventor of the power loom, a combing machine and machines for making ropes, bread and bricks as well as agricultural improvements.
    [br]
    Edmund Cartwright, the fourth son of William Cartwright, was educated at Wakefield Grammar School, and went to University College, Oxford, at the age of 14. By special act of convocation in 1764, he was elected Fellow of Magdalen College. He married Alice Whitaker in 1772 and soon after was given the ecclesiastical living of Brampton in Derbyshire. In 1779 he was presented with the living of Goadby, Marwood, Leicestershire, where he wrote poems, reviewed new works, and began agricultural experiments. A visit to Matlock in the summer of 1784 introduced him to the inventions of Richard Arkwright and he asked why weaving could not be mechanized in a similar manner to spinning. This began a remarkable career of inventions.
    Cartwright returned home and built a loom which required two strong men to operate it. This was the first attempt in England to develop a power loom. It had a vertical warp, the reed fell with the weight of at least half a hundredweight and, to quote Gartwright's own words, "the springs which threw the shuttle were strong enough to throw a Congreive [sic] rocket" (Strickland 19.71:8—for background to the "rocket" comparison, see Congreve, Sir William). Nevertheless, it had the same three basics of weaving that still remain today in modern power looms: shedding or dividing the warp; picking or projecting the shuttle with the weft; and beating that pick of weft into place with a reed. This loom he proudly patented in 1785, and then he went to look at hand looms and was surprised to see how simply they operated. Further improvements to his own loom, covered by two more patents in 1786 and 1787, produced a machine with the more conventional horizontal layout that showed promise; however, the Manchester merchants whom he visited were not interested. He patented more improvements in 1788 as a result of the experience gained in 1786 through establishing a factory at Doncaster with power looms worked by a bull that were the ancestors of modern ones. Twenty-four looms driven by steam-power were installed in Manchester in 1791, but the mill was burned down and no one repeated the experiment. The Doncaster mill was sold in 1793, Cartwright having lost £30,000, However, in 1809 Parliament voted him £10,000 because his looms were then coming into general use.
    In 1789 he began working on a wool-combing machine which he patented in 1790, with further improvements in 1792. This seems to have been the earliest instance of mechanized combing. It used a circular revolving comb from which the long fibres or "top" were. carried off into a can, and a smaller cylinder-comb for teasing out short fibres or "noils", which were taken off by hand. Its output equalled that of twenty hand combers, but it was only relatively successful. It was employed in various Leicestershire and Yorkshire mills, but infringements were frequent and costly to resist. The patent was prolonged for fourteen years after 1801, but even then Cartwright did not make any profit. His 1792 patent also included a machine to make ropes with the outstanding and basic invention of the "cordelier" which he communicated to his friends, including Robert Fulton, but again it brought little financial benefit. As a result of these problems and the lack of remuneration for his inventions, Cartwright moved to London in 1796 and for a time lived in a house built with geometrical bricks of his own design.
    Other inventions followed fast, including a tread-wheel for cranes, metallic packing for pistons in steam-engines, and bread-making and brick-making machines, to mention but a few. He had already returned to agricultural improvements and he put forward suggestions in 1793 for a reaping machine. In 1801 he received a prize from the Board of Agriculture for an essay on husbandry, which was followed in 1803 by a silver medal for the invention of a three-furrow plough and in 1805 by a gold medal for his essay on manures. From 1801 to 1807 he ran an experimental farm on the Duke of Bedford's estates at Woburn.
    From 1786 until his death he was a prebendary of Lincoln. In about 1810 he bought a small farm at Hollanden near Sevenoaks, Kent, where he continued his inventions, both agricultural and general. Inventing to the last, he died at Hastings and was buried in Battle church.
    [br]
    Principal Honours and Distinctions
    Board of Agriculture Prize 1801 (for an essay on agriculture). Society of Arts, Silver Medal 1803 (for his three-furrow plough); Gold Medal 1805 (for an essay on agricultural improvements).
    Bibliography
    1785. British patent no. 1,270 (power loom).
    1786. British patent no. 1,565 (improved power loom). 1787. British patent no. 1,616 (improved power loom).
    1788. British patent no. 1,676 (improved power loom). 1790, British patent no. 1,747 (wool-combing machine).
    1790, British patent no. 1,787 (wool-combing machine).
    1792, British patent no. 1,876 (improved wool-combing machine and rope-making machine with cordelier).
    Further Reading
    M.Strickland, 1843, A Memoir of the Life, Writings and Mechanical Inventions of Edmund Cartwright, D.D., F.R.S., London (remains the fullest biography of Cartwright).
    Dictionary of National Biography (a good summary of Cartwright's life). For discussions of Cartwright's weaving inventions, see: A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the Industrial Revolution, Manchester. F.Nasmith, 1925–6, "Fathers of machine cotton manufacture", Transactions of the
    Newcomen Society 6.
    H.W.Dickinson, 1942–3, "A condensed history of rope-making", Transactions of the Newcomen Society 23.
    W.English, 1969, The Textile Industry, London (covers both his power loom and his wool -combing machine).
    RLH

    Biographical history of technology > Cartwright, Revd Edmund

См. также в других словарях:

  • History of technology — The history of technology is the history of the invention of tools and techniques. Background knowledge has enabled people to create new things, and conversely, many scientific endeavors have become possible through technologies which assist… …   Wikipedia

  • technology, history of — Introduction       the development over time of systematic techniques for making and doing things. The term technology, a combination of the Greek technē, “art, craft,” with logos, “word, speech,” meant in Greece a discourse on the arts, both… …   Universalium

  • History of timekeeping devices — For thousands of years, devices have been used to measure and keep track of time. The current sexagesimal system of time measurement dates to approximately 2000 BC, in Sumer. The Ancient Egyptians divided the day into two 12 hour periods, and… …   Wikipedia

  • History of science and technology in the People's Republic of China — For more than a century China s leaders have called for rapid development of science and technology, and science policy has played a greater role in national politics in China than in many other countries. China s scientific and technical… …   Wikipedia

  • History of pottery in the Southern Levant — The history of pottery in the Southern Levant describes the discovery and cultural development of pottery in the archaeological area of the Southern Levant, which includes the modern day polities of Israel, Jordan, and the Palestinian Authority… …   Wikipedia

  • Technology of the Discworld — The technology depicted in Terry Pratchett s Discworld novels takes two forms: magical and mechanical. Nearly all technology early in the series is at least partially magical, but in recent books there has been something of an industrial… …   Wikipedia

  • Roman technology — is the engineering practice which supported Roman civilization and made the expansion of Roman commerce and Roman military possible over nearly a thousand years. The Roman Empire had the most advanced set of technology of their time, some of… …   Wikipedia

  • Science and mathematics from the Renaissance to Descartes — George Molland Early in the nineteenth century John Playfair wrote for the Encyclopaedia Britannica a long article entitled ‘Dissertation; exhibiting a General View of the Progress of Mathematics and Physical Science, since the Revival of Letters …   History of philosophy

  • History of the world — The history of the world [Williams, H. S. (1904). The historians history of the world; a comprehensive narrative of the rise and development of nations as recorded by over two thousand of the great writers of all ages. New York: The Outlook… …   Wikipedia

  • History of electromagnetism — The history of electromagnetism, that is the human understanding and recorded use of electromagnetic forces, dates back over two thousand years ago, see Timeline of electromagnetism. The ancients must have been acquainted with the effects of… …   Wikipedia

  • History of Malaysia — History of Malaysia …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»